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% Abstract

@

-

\E A powerful approach to debugging and refining the knowledge structures of a
R problem-solving agent is to differentially model the actions of the agent against
¢ a gold standard. This paper proposes a framework for exploring the inherent limi-
o tations of such an approach when a problem solver is differentially modeled against
:‘é an expert system. A procedure is described for determining a performance upper
{:: bound for debugging via differential modeling, called the synthetic agent method.
K The synthetic agent method systematically explores the space of near miss training
S instances and expresses the limits of debugging in terms of the knowledge represen-
::.“ tation and control language constructs of the expert system.

4

"

g 1 Introduction

i.
:'L‘ Artificial Intelligence has long been interested in methods to automatically refine
, and debug an intelligent agent. This is a central concern in machine learning and
L}

::: automatic programming, where the agent to be improved is a program. It is also
B: a central concern in intelligent tutoring, where the agent to be improved is a hu-
'. . » . .

" man problem solver. Many Al systems for improving an intelligent agent involve
.'
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differential modeling of the agent against the observable problem-solving behavior
of another agent. We focus on the situation where one of the agents is a knowledge-
based expert system and the knowledge structures to be improved encode factual

information that is declaratively represented!.

This paper describes the synthetic agent method, which allows calculation of
a performance upper bound on improvement to an intelligent agent attainable by
differential modeling of the agent against an expert system. A performance up-
per bound identifies missing or erroneous knowledge in an intelligent agent that a
particular differential modeling system is inherently incapable of identifying. By
contrast, most performance evaluation procedures aim to determine a performance
lower bound; they experimentally demonstrate that a particular differential model-

ing system can successfully identify some missing or erroneous knowledge.

The synthetic agent method involves replacing the human problem solver in a
differential modeling scenario with a synthetic agent that is another expert system.
The knowledge in the synthetic agent expert system is systematically modified to be
slightly different than the knowledge in the original expert system. The knowledge
in the synthetic agent is modified to be slightly ‘better’ in an apprenticeship learning

scenario and slightly ‘worse’ in an intelligent tutoring scenario.
ghtly g g

This paper is organized as follows. Section 2 surveys previous and current
work on improving an intelligent agent via differential modeling. Section 3 identi-
fies important performance evaluation issues related to evaluation of a differential
modeler. Section 4 presents and discusses the synthetic agent method. Finally,
Section 5 describes an application of the synthetic agent method that is currently

underway.

This paper presents our framework for evaluating a differential modeling sys-
tem. No experimental results are given. A future paper wili describe the use of the
framework to evaluate the ODYSSEUS modeling program (described in Section 5) in

the context of intelligent tutoring and apprenticeship learning.

! As much domain-specific knowledge as possible is declaratively represented in a well designed
knowledge-intensive expert system. Domain-specific procedural knowledge is contained in an expert
system shell for the generic problem class (Clancey, 1984).




2 The Process of Differential Modeling

Many Al systems that debug and refine an intelligent agent employ a method called
differential modeling; this is the process of identifying differences between the ob-
served behavior of a problem-solving agent and the behavior that would be expected

in accordance with an ezplicit model of problem solving.

Statement of Problem

PS DM ES
Problem Differential Expert
Solver Modeler System
v v
Answer Answer

Knowledge Differences
Between PS and ES

Figure 1: A general model of the differential modeling process.
PS solves a problem, and DM finds differences between knowledge
structures of PS and ES. In this paper, equal attention is given to
the situation of apprenticeship learning where PS is a human ex-
pert and the goal is to improve ES; and the situation of intelligent
tutoring where PS is a student and the goal is to improve PS.

The differential modeling process is illustrated in Figure 1. The three major
elements are a problem solver (PS), a differential modeler (DM), and a knowledge-
based expert system (ES). The task of the DM is to identify differences between the
knowledge structures of PS and ES in the course of watching PS solve a problem, for
example a medical diagnosis problem. In the figure, Answer consists of all observable
behavior of the respective problem solver. The DM can be quite complex and can

easily exceed the complexity of the ES.
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Two major tasks that confront a DM are global and local credit assignment,
which are performed by a global and local learning critic, respectively. The global
critic determines when the observable behavior of PS suggests a difference between
the knowledge structures of ES and PS. In such a situation, the local critic is
summoned to identify possible knowledge differences between ES and PS that are
suggested by the actions of PS. A complete learning system consists of a global critic,
local critic and a repair component (Dietterich and Buchanan, 1981); discussion of

the repair stage is beyond the scope of this paper.

2.1 Previous work in differential modeling

Al systems that employ a differential modeling approach to debugging and refining
a problem-solving agent are found in the areas of machine learning, automatic
programming, and intelligent tutoring. We first describe systems that do not employ
a knowledge-based expert system as the explicit model of problem solving and then

describe systems that do.

The earliest such systems were in the rea of machine learning, notably,
Samuel’s checker player and Waterman’s poker player (Samuel, 1963; Waterman,
1970). The PS used by Samuel’s DM program was a book of championship checker
games. The DM global critic task was accomplished by comparing the move of PS
to the move that Samuel’s program made in the same situation. The local critic task
was accomplished by adjusting the coefficients of a polynomial evaluation function
for selecting moves so that the action of the program equaled the action of PS. A
recent example of machine learning research that uses a differential modeling ap-
proach is the PRE system for theory-directed data interpretation (Dietterich, 1984).
PRE learns programs for Unix commands from examples of the use of the commands.
The DM employs constraint propagation to identify differences between the PS and

the programs for commands.

In automatic programming, the synthesis of LISP and PROLOG functions from

exampie traces falls under the rubric of debugging via differential modeling (Bier-
mann, 1978; Shapiro, 1983). The PS consists of the input/output behavior of a




1::'0

¥y

i . . . .
l::?: correct program. The DM modifies the program being synthesized whenever it
L] 1 .

B does not give the same output as PS when given the same input.

In intelligent tutoring the goal is to ‘debug’ a human problem solver. Many
intelligent tutoring systems contain an expert system and use a differential model-
ing technique, including the WEST program in the domain of games (Burton and
Brown, 1982), SOPHIE Il and GUIDON in the domain of diagnosis (Brown et al.,
1982; Clancey, 1979), and the MACSYMA-ADVISOR in the domain of symbolic inte-

gration (Genesereth. 1982). SOPHIE III uses an expcrt system for circuit diagnosis

as an aid in isolating hypothesis errors in the behavior of students who are perform-

ing electronic troubleshooting. GUIDON is built over the MYCIN expert system for

o
i medical diagnosis (Buchanan and Shortliffe, 1984); student hypothesis errors are
._:': discovered in the process of conducting a Socratic dialogue.

~ +
fl‘
el Recent research within machine learning also uses an expert system as the
':.j explicit model of problem solving, especially within the subarea of apprenticeship
oy learning. Apprenticeship learning is defined as a form of learning that occurs in

N
f‘;v the context of normal problem solving and uses underlying theories of the problem
. solving domain to accomplish learning. Examples of apprenticeship learning systems
E o are LEAP and ODYSSEUS. The LEAP program refines knowledge bases for the VEXED
\i: expert system for VLSI circuit design (Mitchell et al., 1985). PS is a circuit designer
:. h . who is using the VEXED circuit design aid and the underlying theory used by the DM

J is circuit theory. ODYSSEUS refines and debugs knowledge bases for the HERACLES
..' . . . .

*_.‘n expert system shell, which solves problems using the heuristic classification method

:-:j_ (Wilkins, 1986). When the ODYSSEUS problem domain is medical diagnosis, PS

"

.E;_": is a physician diagnosing a patient, The DM uses two underlying theories, the
o principal one being a strategy theory of the problem-solving method. ODYSSEUS is
e+ also applicable to intelligent tutoring; it functions as a student modeling program

sy

ol for the GUIDON2 intelligent tutoring system (Clancey, 1986a).
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2.2 Assumptions and issues in differential modeling

Much of the power of an expert system derives from the quantity and quality of its
domain-specific knowledge. For the purposes of this paper, the principai function
of the differential modeler is to find factual domain knowledge differences between
the problem solver and the expert system. Our work assumes that the expert sys-
tem represents domain knowledge declaratively, including domain-specific control
knowledge. Further, as much as possible, the knowledge is represented indepen-
dently of how it will be used by problem-solving programs. This practice facilitates
use of the same domain knowledge for different purposes, such as problem solving,

explanation, tutoring and learning,.

The framework provided by this paper for understanding the limits of de-
bugging via differential modeling has been fashioned with the following assump-
tions in mind. First, we assume that an agent is differentially modeled against a
knowledge-based expert system that is capable of solving the problems presented
to the human PS. Second, we assume that the observed actions of the agent consist
of normal problem-solving behavior in a domain. And third, we assume that the
goal of the differential modeling system is to discover factual domain knowledge
differences between the agent and the expert system’s knowledge base, as opposed
to the discovery of procedural control knowledge differences; procedural knowledge

involves sequencing constructs such as looping and recursion.

There are many open questions regarding debugging via differential modeling
against an expert system. For instance, what are the types of knowledge in the PS
that can and cannot be debugged using a differential modeling approach? What
characteristics and organization of an ES facilitate differential modeling? What
characteristics and organization impose inherent limitations? How can the strengths
and weaknesses of a particular DM be best described? The evaluation methodology
proposed in this paper, called the synthetic agent method, provides a framework

for the exploration of these questions.
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3 Performance Evaluation Issues

DM performance evaluation is intimately related to ES performance evaluation. The
function of a DM is to improve the performance of an ES and so DM performance
evaluation requires ES performance evaluation. Although ES evaluation is a difficult
and time consuming task, there is agreement on the general approach that should be
taken when ES is an expert system program. Examnles of performance evaluation
studies based on a sound methodology are the evaluations of the MYCIN, INTERNIST
and RL expert systems (Yu et al., 1979; Miller et al., 1984; Fu and Buchanan, 1985).

Two major functions of a DM are global and local credit assignment?. The
general problem of assessing the limits of a DM consists of finding performance
upper bounds on a DM’s global and local critics. The difficulty of these functions
1s very domain dependent. In the domain usec to develop repair theory, the global
critic merely has to determine whether a student’s answer to a subtraction problem
1s correct (Brown and VanLehn, 1980). Sometimes a DM has a person perform
the global credit assignment, for example in LEAP and MACSYMA-ADVISOR. In very
difficult domains a DM might have a person perform both global and local credit
assignment; TEIRESIAS takes this approach when debugging MYCIN (Davis, 1982).
TEIRESIAS can be viewed as an intelligent editor that allows an expert to perform

global and local credit assignment while watching MYCIN solve problems.

In domains where expertise involves heuristic problem solving, having a pro-
gram perform global credit assignment is often very difficult. In a medical appren-
ticeship, a student may recognize that his or her knowledge is deficient when he or
she can no longer make sense of the sequence of questions that the physician asks
the patient. Since a weakly plausible explanation for any sequence of questions of-
ten exists, this can be very difficult to implement in a computer program. A similar
situation exists in complex games such as chess or checkers. There is usually no way
to know that a given move is necessarily bad; it depends on what follows. Samuel’s

checker player solved the global critic problem by declaring a discrepancy to exist

2Recall from section 2 that the global critic notices that something is wrong and the local critic
determines which part of the knowledge base is responsible for the error. A learning program consists
of a global and local critic and a repair component.
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':1::: whenever the expert (e.g., the book move) and the checker program recommended
S different moves at a particular board configuration.

CAn

iﬁ There are often many different changes the local critic can make to effect an
::; improvement in the performance element. The selection process is usually based
) on which modification leads to the best improvement in the performance element.
& Selection is very much affected by how ‘improvement’ in defined. This is further
, ‘b_ discussed in Section 3.2.

s

£

Y 3.1 Performance evaluation and the synthetic agent
: ] method

&

) The synthetic agent method proposed in this paper is considerably different from
::'_: standard performance evaluation methods in two fundamental ways. The purpose
:“} of the remainder of Section 3 is to explain and justify these aspects of the synthetic
:::\ agent method. In Section 3.2 we argue that a fruitful evaluation criteria for a
: knowledge-based system should be quality of the individual knowledge elements,
Qi not the quality of the problem solving performance of a particular problem-solving
it program. These metrics only partially overlap and certainly conflict in the short
::::g term. In section 3.3, we describe how the focus of the proposed synthetic agent
:) method is to delineate a performance upper bound. A performance upper bound
K describes where and under what conditions a debugging system for a problem solver
\.;4 must fail. By contrast, a standard evaluation approach aims at showing the extent
e to which a debugging system can succeed. Further, instead of characterizing the
gy limits of debugging in terms of a percentage of problems that cannot be solved, the

synthetic agent method characterizes the performance upper bound in terms of the

knowledge representation language and the inference constructs used in the expert

system.
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3.2 Knowledge-oriented vs. performance-oriented valida-
tion

The ultimate goal of a DM is to improve the performance of a PS or ES. The
architecture of knowledge-based systems requires a shift in our concept of improved
performance. We refer to the type of validation technique we advocate as knowledge-
oriented validation and distinguish it from the traditional practice of performance-

oriented validation.

Performance-oriented validation requires that modifications to a particular
problem-solving program improve problem-solving performance. Because this type
of validation has traditionally focused on improved performance with respect to a
single problem-solving program, the veracity of the underlying knowledge has not
been of overriding concern. A system designed exclusively to maximize problem-
solving performance of a particular problem-solving program may use a method of
knowledge representation in which the semantics of the domain knowledge cannot
be represented easily, if at all. A polynomial evaluation function for rating checker

positions, for example, captures none of the meaning of its terms.

Knowledge-oriented validation might be defined as performance-oriented vali-
dation that prohibits lessening the truth of individual knowledge elements solely for
the sake of problem-solving performance. The advent of large declarative knowledge
bases used by multiple problem solving programs makes this perspective important.
Examples of multiple problem-solving programs that might use the same medical
knowledge base are programs to accomplish medical diagnosis, knowledge acquisi-
tion. intelligent tutoring, and explanation. When multiple programs use the same
declaratively-specified factual knowledge base, it is helpful to specify knowledge
in a manner that is independent, so far as possible, of its use. Knowledge-based
validation accomplishes this by requiring that changes to the knowledge base be

semantically meaningful.

Suppose we wish to be faithful to the traditional performance-oriented vali-
dation paradigm when using multiple-purpose knowledge bases. This requires that

every time a learning program finds a change to the knowledge base that will improve

10
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one problem-solving program, before that change can be recorded, the validation
method must insure that the aggregate performance of all programs is improved.
This policy will be expensive and computationally overwhelmming. Further, pro-
grams for all the intended uses of a knowiedge base are not necessarily in existence

at the time learning is taking place.

Another rationale for knowledge-oriented validation is our belief that perfor-
mance in the long term will be more correct and robust if the knowledge structures
are carefully developed. Moreover, when PS is a person, it is unrealistic, proba-
bly even unwise, to attempt to replace semantically-rich knowledge structures with

others that deviate radically from them merely to improve short-term performance.

It should be noted that to some extent all programs for improving an in-
telligent agent aim at both good performance and good knowledge; nevertheless,
almost all past research in machine learning, intelligent tutoring and automatic
programming has adopted a pure performance-oriented validation approach. This
is especially true in automatic programming, where any mutation to the program
to be debugged is judged to be acceptable if it causes the program to produce the

correct output when given a correct input/output training instance (Shapiro, 1983).

In machine learning, one of the best systems for refining an expert system
knowledge base is the SEEK2 program for the EXPERT expert system shell (Gins-
berg et al., 1985). This learning system takes a performance-oriented validation
approach. One possible input to SEEK2 is a representative set of past solved cases
and an initial knowledge base of rules. Given this input, SEEK2 attempts to modify
elements of the knowledge base so as to maximize the problem-solving performance
of the EXPERT expert system on the given representative set of solved problem cases.
In EXPERT, the strengths of inexact rules in the knowledge base are represented us-
ing certainty factors (CFs). Examples of modification operators used by SEEK2 to
improve performance are LOWER-CF and RAISE-CF (Ginsberg, 1986). When a repre-
sentative set of past cases is present, the strengths of inexact rules are determined,
since certainty factors can be given a strict probabilistic interpretation (Heckerman,
1986). We strongly believe that an arbitrary change to the strength of a rule just

to improve performance is unjustifiable and unnecessary (Wilkins and Buchanan,

11




M
Sy
o
:,:'r‘: 1986). The cost of this improved performance is a knowledge base that may con-
)
™ tain incorrect knowledge. The SEEK2 refinement approach is not an instance of
g PP
o knowledge-oriented learning; it does not use knowledge-oriented validation.
50
P . o . .
{9t A good example of knowledge-oriented learning is repair theory in the domain
+ ' . . .
:“,,‘ of subtraction problems (Brown and VanLehn, 1980). Repair theory is concerned
' ? with detecting underlying bugs, given the observable problem solving behavior of
:-:) students. Repair theory has a procedural model of problem solving that claims to be
;3 a plausible model of the associated human skill; bugs of students are correlated with
’ possible bugs in the problem-solving procedure for subtraction. Repair theory is
similar in spirit to the synthetic agent method we propose for assessing a differential
@
‘ modeling system. Repair theory generates most of the significant possible bugs by
3"' deleting parts of the procedural knowledge; likewise we expect our approach to
D)
t:'o:: generate most of the significant possible types of bugs in the declarative domain
-at
knowledge base, mainly by deleting parts of the knowledge base, as we shall describe
'_:., in Section 4. The main difference is that in the repair theory model of subtraction
w_- the PS and ES knowledge is almost completely procedural, whereas we are interested
b in factual knowledge is declaratively represented.
w
o 3.3 Capability-oriented vs. limitation-oriented validation
kD
—)ﬂ A typical way of validating that a DM improves an ES involves using a disjoint set
'&' of validation and training problem sets. The ES solves the validation problem set
5t ) . .
-.:: and its performance is recorded. Then the DM improves the ES while watching
"\ a human expert PS solve a training problem set. Finally ES solves the validation
‘ problems again; the amount of improvement in performance provides a measure of
'-.;:: the quality of the DM.
2o
N . . : .
bl This scenario establishes a lower bound on the quality of a DM. By increasing
i the size of the training problem set, DM might improve ES even more. We refer to
O validation methods that establish a lower bound on the quality of a DM as capability-
T, . .. . . - .
s oriented. For a given set of training and validation problems, capability-oriented
L4
s validation shows that the DM is responsible for a more capable ES.
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Another method of validating a DM is to have the DM watch a student solve a
training problem set. Let us assume that the student exhibits a representative set of
the types of domain knowledge errors that could be made in the problem domain.
A domain expert can manually identify the domain knowledge errors connected
with each training problem. This manual analysis provides a performance upper
bound with respect to this training set for the DM, and the DM modeling program
is measured against this standard. The goals of this type of manual analysis and
our proposed automated analysis using the synthetic agent method are identical, in
the case where the student and the problem set have been both constructed so as

to allow all possible types of domain knowledge errors to be made.

We desire to know those types of differences in an expert system knowledge
base that cannot be detected or corrected via differential modeling. In contrast
to the capability-oriented approach, our validation approach aims at determining
when the differential modeler must fail — we are limnitation-oriented. For example,
a limit of a program for inducing LISP functions from examples might be that the
program can’t induce cases that require certain types of loop constructs. In our
work, we have focused on showing certain conditions that force the differential
modeling approach to fail under the most favorable of conditions, the single fault
assumption. The multiple fault assumption would allow determination of a broader

performance upper bound.

4 Synthetic Agent Method of Validation

The apprenticeship learning and tutoring scenarios shown in Figures 2 and 3 involve
two agents: a person and an expert system. The person serves as an expert and stu-
dent, in the context of apprenticeship learning and intelligent tutoring, respectively.
The synthetic agent method consists of replacing the person with a synthetic agent,
which is another expert system, in order to experiment with and validate the dif-
ferential modeling system objectively. The knowledge in the synthetic agent expert
system is modified to be slightly different from the knowledge in the original ex-
pert system. The knowledge is modified to be slightly ‘better’ in an apprenticeship

13




learning scenario and slightly ‘worse’ in an intelligent tutoring scenario.

Problem Statement

PS DM ES
Human — Differential Apprentice
Expert Modeler Expert System
Answer Differences Between Answer

Knowledge Structures
of PS and ES

Figure 3: Apprentice learning scenario: Apprentice expert system
watches human expert through the differential modeling program,
with the goal of improving the apprentice program’s knowledge.

An advantage of the synthetic agent method is control over interpersonal vari-
ables involved in differential modeling. An example of an interpersonal variable is
the problem-solving style of a PS, as exemplified by the set of strategic diagnostic op-
erators used by the PS. Diagnostic operators specify the permissible task procedures
that can be applied to a problem as well as the allowable methods for achieving the
task procedures. Examples of problem-solving operators in the domain of diagnosis
include: ask general questions, ask clarifying questio:.s, refine hypotheses, differen-
tiate between hypotheses, and test hypothesis. Another interpersonal variable is

the quantity of domain-specific knowledge that the PS possesses.

While control of interpersonal variables almost always leads to an incorrect
DM performance lower bound, conclusions reached concerning a performance upper
bound are sound when interpersonal variables are controlled. If a system is inher-
ently limited under the most optimal assumptions possible for differential modeling,
it will still be inherently limited in those settings that involve a less optimal differ-

ential modeling setting.
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Problem Statement

PS DM ES
Student Differential Expert System
Modeler
Answer Differences Between Answer
Knowledge Structures
of PS and ES

Figure 4: Intelligent tutoring scenario: Expert system watches
student through the differential modeling program, with the goal
of improving the student’s knowledge.

In the learning and tutoring scenarios, the synthetic agent method treats the
original expert system knowledge base as a “gold standard”. The apprentice ES
and the student PS always have a deficiency with respect to this gold standard. In
this paper we restrict our analysis to the situation where the apprentice’s knowledge
differs from the gold standard by a single element of knowledge; hence we have a
single fault assumption. Two types of knowledge base discrepancies are possible:
missing knowledge and erroneous knowledge. The synthetic agent method proce-
dure described in section 4.1 shows how deletion of knowledge can represent the
space of missing and erroneous knowledge. Other methods for creating erroneous

knowledge are described in section 4.3.

For a given problem statement, a distinction is made between referenced, ob-
servable, and essential knowledge in the ES’s knowledge base. The relation between
these categories is illustrated in Figure 4. Referenced knowledge is simply knowledge
that is accessed during a problem solving case. Observable knowledge is knowledge
whose removal leads to different external observable behavior of a PS, either in the

sequence of actions that the PS exhibits or the final answer. Essential knowledge is
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;:;;: knowledge whose removal leads to a significantly different final answer.

«

L)

i“l‘.

e Of most concern is the apprentice’s ability to acquire the essential knowledge
o elements connected with a problem statement. These are the relations most im-
"l

Pl portant for solving a given case. For plausible reasoning systems, what comprises a
i gag P g sy P

,:-: significantly different answer needs to be specified. For instance, if there are multi-
24

W ple diagnoses, the significance of the order in which the hypotheses are ranked needs
;d' to be determined. Acquisition of elements that are observable but not essential are
Ny

;::', also of interest, since they can be essential elements with respect to another problem

)

‘ ‘.l statement.

R

The procedure for calculating a performance upper bound on a differential
» .
:: modeling system is now presented.
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",:::: 4.1 The synthetic agent method
o
Ay
KR Step 1. Create synthetic agent. Replace PS with a synthetic agent: a copy of ES
O with initially the same domain knowledge.
TN
{“ Step 2. Solve problem case. Solve a problem using PS and save the solution trace, ‘\
») 1.e., the observable actions of PS and the final answer.
-rb_"-c
2y Step 3. Identify observable knowledge. For a particular problem case, collect all
b
:: elements in the knowledge base that were referenced by PS during problem
" solving. Identify the observable knowledge: the subset of the referenced knowl-
:; & edge whose removal would lead to a different solution trace or a different final
55; answer.
"‘p*'
::',‘o Step 4. For each observable know ledge element:
L)
:? Step 4a. Remove the element from ES. In an apprenticeship learning sce-
f::: nario this creates an apprentice expert ES with missing knowledge. In
"»j an intelligent tutoring scenario the element removed from the ES is de-
A
Nod clared to be erroneous®. Since the element is still present in PS, the
e synthetic student PS has erroneous knowledge.
.
Péj Step 4b. Detect and localize knowledge discrepancy. Have the PS solve the
:-j problem case. See if DM can detect (the global critic problem) and
g localize (the local critic problem) the knowledge difference.
;:!" Step 5. For each observable knowledge element:
\4
58
.(" Step 5a. Remove the element from PS. In an intelligent tutoring scenario
L this creates a synthetic student PS with missing knowledge. In an appren- |
W ticeship learning scenario the element removed from the PS is declared |
3 to be erroneous®. Since the element is still present in ES, the apprentice
::'_E expert ES has erroneous knowledge.
)
.. Step 5b. Detect and localize knowledge discrepancy. Have the PS solve the
Bt problem case. See if DM can detect (the global critic problem) and
lw"‘l localize (the local critic problem) the knowledge difference.
0
::'.:. IN . B. This element of knowledge is treated as erroneous for purposes of validation. In reality,
y i the element is true knowled
> eleme > ge.
9 )., J
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R 4.2 Discussion of synthetic agent method
N 4
Wt
) An expert system’s explanation facility can be helpful in locating the observable
AU
""‘ knowledge with respect to a given problem case. One of the hallmarks of a good
Ko g 1 given | g
K o expert system 1s its ability to explain its own reasoning. So it is not too much to
2 . .

‘ ")' ask for those pieces of knowledge used on a problem case. and a good explanation
:' N system might even be able to identify the essential knowiedge. At worst, given
o, . 3 4 1
:-"‘- the pieces of knowledge that were used to solve a particular problem, the essential

o . . . . .
Lo pieces of knowledge can be determined by experimentation. Usually, only a smal.

amount of an expert system’s domain knowledge is observable with respect to a

given problem, and our experiences in the medical diagnosis domain have shown us

::is that only a small amount of the observable knowledge is essential knowledge.

.,

:‘ A Some knowledge that is referenced by the expert system may not have ob-

servable consequences, even if it is used by the problem solver, since the removal

N of knowledge does not always effect the external behavior of a problem solver. For
.-,.;\ instanice, In MYCIN and NEOMYCIN, terms that represent medical symptoms and
:‘” measurements, such as patient weight, have an ASKFIRST property. The expert
:, ] system uses the value of this property to decide whether the value ~f a variable is
:| first determined by asking the user or first determined by derivation by some other
N method. such as from first principles. However, if the system does not possess tech-
" niques for deriving the information from other principles, then the external behavior
J of the system is the same regardless of the value of the ASKFIRST property.

2

:: Wlhen testing the global critic in steps 4b and 5b of the synthetic agent
l}', method, part of the assessment must relate to whether the apprentice detects
o knowledge base differences close to the point in the problem-solving session where
.,.; the different knowledge was used. This temporal proximity is important, since the
:;-.: ' problem-solving context at this point in the problem-solving session strongly focuses
i the search for missing or erroneocus knowledge.
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4.3 Categories of errors

The knowledge organization that we focus upon specifies all factual domain knowl-
edge in a declarative fashion. In such a knowledge base. there are two main cat-
egories of errors: missing and erroneous knowledge. Missing knowledge is absent
from the knowledge base, and erroneous knowledge is factually incorrect knowledge

that is present in the knowledge base.

The space of missing knowledge is easy to generate, especially with the single
fault assumption. Recall that the original expert system serves as our gold stan-
dard and the domain knowledge in the expert system is declaratively represented.
Hence, the number of single faults from missing knowledge is equal to the number

of elements in the declarative knowledge base.

The space of erroneous knowledge is much more difficult to describe. The
synthetic agent method takes a novel approach to the problem in steps 5a and
6a. An erroneous element is created by declaring a correct knowledge element to
be erroneous for purposes of validation. We are also considering other approaches.
Much of the knowledge is represented declaratively and typed. Therefore, erroneous
knowledge can be generated by substituting different values for the knowledge in
the range of the type, as long as the assumption can be made that the erroneous
knowledge is at least correctly typed by the problem solver. The space of possible
variations of declarative associational rule knowledge is significantly reduced by the
practice used in the HERACLES’ expert system shell of factoring different types of
knowledge from the domain knowledge, such as causal, definitional, and control
knowledge (Clancey, 198Gh).

5 Application of Synthetic Expert Method

Our investigations of a performance upper bound for a differential modeler are be-
ing performed in the context of the HERACLES and ODYSSEUS systems. HERACLES

is an expert system shell that solves classification-type problems using the heuris-
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tic classification method (Clancey, 1985). The ODYSSEUS program differentially
models a PS against any ES implemented using the HERACLES expert system shell
(Wilkins, 1986). When PS is a human expert, ODYSSEUS functions as a knowledge
acquisition program for the HERACLES expert system shell. When PS is a student,
ODYSSEUS functions as a student modeling program for the GUIDON?2 intelligent
tutoring system, which is built over HERACLES.

Problem Statement

PS DM ES

“Expert” Apprentice
Expert System Expert System

Line-of-Reasoning
Generator
}
Global Critic
Expert System Answer

¢

Local Critic
Expert System

Answer

Differences Between
Knowledge Structures

of PS and ES

Figure 6: Synthetic agent validation situation for apprenticeship
learning in which the role of the PS has been filled by a synthetic
expert system. In apprenticeship learning, the DM watches PS to
improve ES’s knowledge structures.

_ e In HERACLES, domain knowledge is encoded using a relational language and
:'E- MYCIN-type rules (Clancey, 1986b). The knowledge relations of the relational lan-
T . . . . :
2 guage are predicate calculus representations of the domain knowledge, written using
8

;; ‘: 20




R
s
RN
::é: the logic programming language MRS. For example, an instantiation of the propo-
L sition (SUGGESTS $PARM $HYP) represents the fact that if a particular parameter
R, is true then this suggests that a particular hypothesis is true. An instantiation of
‘-. the template (ASKFIRST $FINDING $FLAG-VALUE) specifies whether the system
E'(z should first ask the user for the value of a finding, or derive the information from
‘ '; existing information. The major domain knowledge base for HERACLES at this time
N is the NEOMYCIN knowledge base for diagnosing meningitis and neurological prob-
'-?:‘: lems (Clancey, 1984). A second effort in the sand casting domain is called CASTER
f (Thompson and Clancey, 1986).
A Three aspects of the HERACLES expert system shell facilitate the task of
}-ﬁ differential modeling faced by ODYSSEUS. First, distinctions are made between the
wad different types of knowledge in HERACLES’ knowledge base, such as heuristic, def-
ot initional, causal, and control knowledge. Second, the method of reasoning, called
0 hypothesis-directed reasoning, approximates that used by human experts (Clancey,
:'; 1984). Hence, HERACLES can be viewed as a simulation of an expert’s process of
] \'_’ diagnosis. Third, the control knowledge is explicitly represented as a procedural
o network of subroutines and metarules that are both free of domain knowledge; the

subroutines and metarules use variables rather than specific domain terms (Clancey,
1986b). By contrast, the heuristic rules in MYCIN have a great deal of control knowl-
edge imbedded in the premises of the rules (Clancey, 1983; Buchanan and Shortliffe,
1984).

Figure 5 shows the place of the ODYSSEUS DM in the context of debugging an
apprentice expert system. The DM tracks the problem-solving actions of the PS step
by step. For each observable step of the problem solver, ODYSSEUS generates and
scores the alternative lines of reasoning that can explain the reasoning step. If the
global critic does not find any plausible reasoning path, or all found paths have a low
plausibility, ODYSSEUS assumes that there is a difference in knowledge between the
human problem solver and the expert system. The local critic attempts to locate the
knowledge difference either automatically or by asking the expert specific questions.
ODYSSEUS’ analysis of problem-solving steps uses two underlying domain theories: a
strategy theory of the problem-solving method called hypothesis-directed reasoning

using the heuristic classification method, and an inductive predictive theory for
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heuristic rules that uses a library of previously solved problem cases.

The ODYSSEUS global and local critics are themselves being implemented
as two HERACLES-based expert systems. There are three reasons wly we choose to
unplement the eritics as expert systems. First, the task that confronts the learning
crities 1s a knowledge-intensive task (Dietterich and Buchanan, 1981), and expert
system techniques are useful for representing large amounts of knowledge. Second.
with an expert system architecture, the reasoning method nsed by the critics can
be made explicit and easily evaluated, since the domain knowledge is declaratively
encoded using HERACLES' knowledge relations and simple heuristic rules. Third,
since ODYSSEUS 1s designed to improve any HERACLES-based expert system, it can

theoretically mmprove itself in an apprenticeship learning setting.

Approximately sixty different knowledge relations in HERACLES specify the
declarative domain knowledge. It would be useful to know how successful the global
aud local eritics are at detecting discrepancies in the different knowledge relations
of the knowledge representation language. Are there certain types of knowledge re-
lations whose absence is always noticeable? Are there particular types of knowledge
whose absence is very hard to recognize? For example, HERACLES represents final
diagnoses in a hierarchical tree structure; determining that a problem is caused by
a missing link in this structure may be very difficult for the apprentice to discover.
By contrast. it may be very easy to discover whether a trigger property of a rule is
missing. A trigger property causes the conclusion of a rule to treated as an active
hypothesis if particular clauses of the rule premise are satisfied. Clearcly global and
local eredit assignment are greatly affected by the complexity of the procedural

control Faowledge used in the expert system shell.

6 Summary

With the proliferation of expert systems. methods of intelligent tutoring and ap-
prenticeship learning that are based on differential modeling of the normal problem-

solving behavior of a student or expert against a knowledge-intensive expert system
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n should become increasingly common. The synthetic agent method is proposed as
.f- : an objective means of assessing the limits of a particular differential modeling pro-
it gram in the context of intelligent tutoring and apprenticeship learning. The power
;‘}: of a differential modeler is crucially dependent upon the expert svstem’s method
'_;-5.}: of knowledge representation and control. The synthetic agent method provides a
) 3\ means of expressing the limitations of a differential modeler in terms of the knowl-
G edge representation and control vocabulary.

P

h *: The synthetic agent method involves a systematic perturbation of a prograre
R that takes the place of the student or expert. Traditionally, methods of cvaluating
e a differential modeler have focused on a performance lower bound. The described
'._E synthetic agent method focuses on establishing a performance upper bound. It
. & provides a means of exploring the extent that a differential modeling system is able
oy to detect and isolate an arbitrary difference between a knowledge base of an expert
. system and the problem-solving knowledge of a tudent or expert. Our work to
‘{\f date confirms our belief that the task of differential modeling is easier the more an
é&j": expert system represents factual domain knowledge in a declarative fashion.

o,

:._ The validation framework described in this paper is being used to assess
:"':E: the limits of the ODYSSEUS modeling program in the context of intelligent tutoring
e and apprenticeship learning. Students and experts are being differentially modeled
,"' against knowledge bases for the HERACLES’ expert system shell. This should lead
J to a better understanding of the synthetic agent method, the ODYSSEUS modeling
w program, and the extent to which HERACLES' method of knowledge representation
and control facilitates differential modeling.

Iy, 4,
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